TimeTracer: A Tool for Back in Time Traceability Replaying

Christoph Mayr-Dorn
Johannes Kepler University Linz
Linz, Austria
christoph.mayr-dorn@jku.at

ABSTRACT

Ensuring correct trace links between different types of artifacts
(requirements, architecture, or code) is crucial for compliance in
safety-critical domains, for consistency checking, or for change
impact assessment. The point in time when a trace link was created,
however, (i.e., immediately during development or weeks/months
later) has a significant impact on the quality of these trace links.
Assessing quality thus relies on obtaining a historical view on
artifacts and their trace links at a certain point in the past which
provides valuable insights on when, how, and by whom, trace links
were created. This work thus presents TimeTracer, a tool that allows
engineers to go back in time — not just to view the history of artifacts
but also the history of trace links associated with these artifacts.
TimeTracer allows easy integration with different development
support tools such as Jira; and it stores artifacts, traces, and changes
thereof'in a unified artifact model: https://youtu.be/AvINJqGQDuA.
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1 INTRODUCTION

Quality assurance engineers, product managers, or team leads need
to maintain trace links between different types of artifacts for vari-
ous purposes. This is especially crucial in safety-critical domains to
fulfill regulatory requirements such as the DO-178C standard for
airborne systems, to facilitate consistency checks, or supporting
change impact assessment. One problem engineers face is that for
these activities the current set of trace links and artifacts’ status is
often insufficient to properly assess (process) quality or whether the
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relevant traces were available when engineers engaged in design,
implementation, or testing activities. A quality assurance engineer,
for example, needs to know how trace links were established and
how the process of creating them progressed (when a specific trace
link was created, updated, or reviewed). The point in time when a
trace link was created, e.g., when developers create links between
requirements and code immediately when working on new code or
weeks later (when they barely remember precise details on what
they have been working on), has a severe impact on the quality
of these trace links. It might further make a difference whether
requirement-to-architecture trace links were in place when devel-
opment started, or whether these have been created after the fact.
Obtaining a historical view on artifacts and their trace links, as
well as the version of linked artifacts at a certain point in time,
allows to gain insights when and how trace links were created
(e.g., during design or just a the end before a quality gate) and thus
can provide invaluable feedback whether engineers followed the
intended process. Furthermore, when engineers detect errors in
already reviewed trace links, they may return to a state of links and
artifacts at the time of the last review to better understand why
certain trace links were (not) set at that particular point in time. A
quality assurance engineer may check for how long an artifact, or
the process, were in an inconsistent state. Returning to a prior state
and stepping through changes allows the realistic testing of new
quality/trace constraints, for example, testing whether addition
constraints are able to timely identify a newly emerged undesirable
situation. Merely resetting an artifact to a previous version or in-
specting its change log — as most tools support — is insufficient as
trace links typically connect multiple different (types) of artifacts,
thus requiring to simultaneously and consistently rewinding those
artifacts to a previous version.

In order to address these challenges, we propose a novel approach
and tool called TimeTracer, that provides a mechanism to go back in
time across not just artifacts, but also traces. TimeTracer connects
to various software development support tools such as Jira [1],
e.g., used for issue tracking and (agile) project management, or
Jama [8] for managing requirements, and stores artifacts, traces,
and changes thereof in a unified artifact model. A quality assurance
engineer, for example, selects the artifacts s/he is interested in, the
trace scope (the extent to which additional artifacts connected via
trace links are selected for reverting), and the timestamp in the
past. TimeTracer then retrieves the directly and indirectly identified
artifact from the database and then, step-by-step, applies changes
until the provided timestamp is reached. The engineer can inspect
the state of artifacts and trace links at that time and additionally
step change-by-change through time (i.e., replay how artifacts and
traces evolved over time). To show the feasibly of the approach, we
conducted a preliminary evaluation of our tool using data from the
Dronology [2] project.
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2 USAGE SCENARIOS & RELATED WORK

An artifact’s history (aka previous artifact and trace link states) can
be useful for various different purposes and application scenarios.
In the following we briefly describe three motivating scenarios in
which TimeTracer can provide valuable support for analyzing and
assessing the quality of artifacts and trace links.

1 — Sprint retrospective: While burndown-charts and other
analyses, typically baked into agile project management tools, can
provide interesting data, TimeTracer ’s ability to step back and
forth in time can provide insights that greatly exceed those that
these analyses can provide. For example, when discussing what
specific tasks and activities required more time or resources, or
coordination than expected, engineers can precisely re-establish the
process information and artifact status at the time of each situation.
This could allow to, on a very fine-grained level, analyze what led
to a certain problem by stepping back in time and revisiting the
steps that lead to the issue, or stepping forward to asses the impact
on other tasks or development artifacts.

2 — Developing Quality Constraints: When quality assurance
engineers introduce new constraints (e.g., a requirement’s valida-
tion method needs to trace to an appropriate test method), they
need to test them on changing artifacts in realistic scenarios. Man-
ually creating those scenarios and preparing a change history is
tedious and potentially error-prone: important conditions could
be overlooked or completely missing. Artifact and trace history
replayed via TimeTracer facilitates the use of real data sets and
ensures that new constraints are correctly evaluated and detect vi-
olations when changes occur. This procedure is particularly useful
when an undesirable situation (e.g., releasing without completing
a test coverage review) has been identified that wasn’t covered by
the existing set of constraints. When implementing and adding new
constraints, the quality assurance engineer can use TimeTracer to
check on the fly whether the new constraints would have caught
the undesirable situation in the past right after it occurred.

3 - Software Engineering Research Evaluation: Evaluation
of novel development support tools or recommendation algorithms,
for example, for newly reported bugs often relies on capturing what
decisions or results a prototype produces, given a particular (set
of) input artifacts or process states. These then, in turn, need to be
compared to a later/subsequent state, in order to assess the proto-
types functionality and usefulness. For example, the ability of an
algorithm to predict/recommend a trace link between a require-
ment and a test case based on textual description can be evaluated
by running the algorithm on the artifact version before a trace
has been established, and then comparing the recommendation
with the replayed artifacts and traces at a later point in time. With
TimeTracer , researchers can return an artifact to its initial version,
execute their recommender, and then replay the artifact to its final
version to compare it to their recommendations.

2.1 Related work and tools

Previous work on support for coordination in the software engi-
neering domain includes Hipikat [3] which supports developers in
retrieving relevant artifacts from a project’s overall history. Its con-
siders documents, tasks, commits, messages, and artifact changes
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but does not included detailed interaction history or artifact de-
pendencies. Wolf [7] extracts artifact ownership and changes from
source code repositories and generates traces between artifacts and
engineers. The tool provides an organizational view for managers
and an individual view for developers to support impact analysis ac-
tivities. More recently, various approaches have been proposed that
leverage information from different artifact repositories in order to
create, maintain or augment incomplete trace links [9, 10] or use
historical information [6] for predicting impacted classes. Design
space [4] supports the integration of artifacts (and their traces)
from multiple engineering domains and also maintains a version
history. It, however, provides no dedicated replay mechanism nor
mechanism to import an existing artifact history. One commercial
tool “Replay for Jira” ! is an add-on to Jira. It, however, solely fo-
cuses on visualizing how Jira issue properties changed over time.
While this can provide valuable information in an agile context for
scrum masters, or project managers, it does not provide an API for
external data analysis outside of Jira and hence does not provide
support for including artifacts and traces to other repositories or
tools. TimeTracer in contrast supports arbitrary artifacts and traces,
and provides a simple but powerful API for integration.

3 TOOL ARCHITECTURE

TimeTracer consists of artifact generic storage and replaying compo-
nents, tool specific adapters for importing artifacts, their relations
and changes, and provides a Replay API to external application.
Capture and Replay — C&R Core

The C&R Core provides a generic datamodel that is used to cre-
ate a uniform representation of the different artifacts provided by
the different tool adapters. In our prototype implementation the
data model comprises three main elements: (1) ReplayableArtifacts
and their properties, (2) Relations (e.g., traces), and (3) ChangeEn-
tries associated with an artifact. A ReplayableArtifact is a generic
representation of any element provided by a tool adapter.? For
example, an issue entry, or a user story in Jira are fetched by the
respective adapter and converted into our internal representation.
ReplayableArtifacts can have arbitrary properties attached i.e., fields
from the Jira issue (such as type, state, description, etc.). Dependen-
cies as well as links between issues are represented as bidirection-
ally traversable Relations. For example, in Jira a refines dependency
between a user story and a task is transformed into the respective re-
lation with the source and target represented by the corresponding
ReplayableArtifact. Finally, change/history information is collected
and stored as separate ChangeEntries containing all information
necessary to restore an artifact to its prior state. ChangeEntries
describe the creation and deletion of artifacts, changes to their prop-
erties and relations. Note that artifacts are not completely deleted
from the storage but rather just marked as “deleted at their origin”.
Otherwise, the replay mechanism would not be able to reconstruct
an already deleted artifact. The unified representation allows the
replay component to operate without any specific adapter code and
without maintaining an active connection to the respective reposi-
tory or data source. All artifacts are stored in a database and can

Lhttps://marketplace.atlassian.com/apps/1213308/replay-for-jira
%In this paper, we use the term Artifact to refer to the artifact at its origin, and
ReplayableArtifact to refer to its representation in the TimeTracer tool.
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Figure 1: TimeTracer architecture and Quality Constraint Checker application

be retrieved when requested via the Replay API (e.g., all artifacts of
a specific type for a specific time period)
Tool Adapters

The Artifact Update API provides an internal, clean decoupling
of the capture and replay mechanism from the various data sources.
Each tool adapter has to provide three main capabilities: a) retriev-
ing data from a source and transforming them into ReplayableArti-
facts and Relations, b) extracting change and history information
and storing them as respective ChangeEntries, and finally c) pro-
viding updates should the artifact change at its authoritative origin
(not shown in Figure 1(a)). The Artifact Transformer collects arti-
facts from a data source, e.g., all user stories for a specific project
from a Jira server, converts fields to artifact properties and provides
the C&R Core with the respective ReplayableArtifact and Relation
elements. The converter decides whether properties such as Jira
item’s release field are modeled as a ReplayableArtifact’s property
or as a separate release ReplayableArtifact with a relationship to
the parent ReplayableArtifact item. Secondly, the Delta-Transformer
analyzes the change history of an artifact, for example, in the case
of a Jira issue, all history items attached to an user story and cre-
ates a set of corresponding ChangeEntries which includes change
timestamps, change author, changed elements, and fields etc. Ad-
ditionally, the Delta-Transformer has to handle references to any
artifact deleted prior to being tracked by TimeTracer . It might de-
cide to drop any historical changes referencing a deleted artifact,
(then TimeTracer remains completely unaware of the previous ex-
istence of that artifact) or creates a skeleton ReplayableArtifact
without any properties beside its id. Note that in the latter case,
the exact time of deletion cannot be established but rather only the
last confirmed existence as indicated by a change entry. Finally, the
tool adapter’s update mechanism has to keep track of the original

artifact (e.g., via periodically polling the Jira server for changed
elements) and update the ReplayableArtifact in case a change is
observed. The tool adapters only require read-only access to data
sources as TimeTracer does not change any artifact at its origin and
leaves real data in production environments untouched.
Extensibility - Build your own Tool Connector

Most software development tools such as Jira, Jama, or Github
provide a REST API and even come with corresponding Java clients.
Implementing additional connectors is thus a matter of implement-
ing (a) the conversion of domain specific artifact representations
into our generic artifact representation, (b) the conversion of ar-
tifact changes into our generic ChangeEntries format, and, where
necessary, (c) the polling mechanism for continuously retrieving
recent artifact updates. As described above, the tool connectors are
strictly reading artifacts thus no logic for updating artifacts is fore-
seen nor required by our tool. TimeTracer is also suitable to include
artifacts managed by external tools that provide no change history
under the condition that the connector tracks artifacts already from
the time of their creation and polls for updates sufficiently often
(where “sufficiently often” depends on the expected artifact update
frequency and the extent to which missing potentially intermediate
artifact versions is acceptable).

3.1 Implementation Details and Usage

Our TimeTracer prototype is fully implemented in Java and the
source code is available on Github 3 and the demonstration video
on Youtube.* For storing ReplayableArtifacts and ChangeEntries we
employ a Neo4]J graph database. We have further implemented pro-
totypes of an example connector for Jira. This connector is largely

Shttps://github.com/jku-isse/icse2020-demo-timetracer
“https://youtu.be/AvINJqGQDuA
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generic and can handle arbitrary types of artifacts (such as agile
user stories, requirements, and custom types) and can easily be
configured to collect issues and changes. The key element of the
Replay APl is a ReplayableSession. The user obtains a ReplayableSes-
sion from the C&R Core and can additionally specify the scope of
relevant artifacts to be returned. This could, for example, comprise
all artifacts or rather (for performance reasons) a set of one or more
artifacts including a traversal depth. The traversal depth determines
how far (i.e., how many hops) the session will continue along (past
and present) relations to select artifacts for replaying. For example,
a depth of 1 will select the initial artifacts and all of their directly
linked artifacts.

All the replay actions affect only the artifacts in the session, thus
avoiding the need to conduct replay actions for all stored artifacts.
Replay time denotes the point in time (in the past) to which all
artifacts in the session have been transformed to (i.e., the artifacts
are in the state they were in at that particular time). TimeTracer pro-
vides following key functionalities: (1) going forward and applying
the the next change from all changes across all artifacts in the ses-
sion; (2) forward to a specific timestamp like forward but applying
changes in temporal (oldest first) order that have a timestamp ear-
lier or equal to the provided timestamp; (3) going backward from
all changes across artifacts in the session and the current replay
time, applies the next change of the session’s past; (4) backward to a
specific timestamp like backward, but applying changes in temporal
order (newest first) that have a timestamp later than the provided
timestamp; (5) fastforward(artifactlds): repeatedly calls forward as
long as neither of the provided artifacts are affected, i.e., stops after
having applied the first change to one of these artifacts; (6) fastre-
verse(artifactlds): repeatedly calls backward as long as neither of
the provided artifacts are affected, i.e., stops after having applied
the first change to one of these artifacts; (7) latest/oldest: reverts
all artifacts to their most up to date version, respectively, earliest
known version.

4 PRELIMINARY PROTOTYPE EVALUATION

We conducted a preliminary evaluation by integrating TimeTracer with

a demo application that provides a development-process aware
quality constraint checker (QCC) in order to demonstrate the feasi-
bility of the second scenario, and utilized data available from the
Dronology dataset [2]. The Dronology project uses Jira to manage
Hazards, Requirements, Design Definitions, Tasks, etc. (including
trace links among the different artifacts) to manage the develop-
ment of a framework for controlling and coordinating UAVs. QCC
allows engineers to define and check constraints on traces and arti-
facts that need to hold true in the various issue states (“‘open”, “in
progress”, ...). It integrates the Drools rule engine [5] to check any
constraints encoded as Drools rules. We provide a simple command
line interface (as shown in the accompanying video) to define the
point in time to revert an Jira issue (and linked artifacts) and/or to
step through the various changes of one or more issues. Replaying
the issue from beginning to end facilitates checks for each issue
state by repeatedly triggering consistency checks and analyzing
if constraints are violated (cf. screenshot of QCC User Interface
in Figure 1(b)). In the QCC, while replaying only some artifact
would be possible, we replay the entire set of stored artifacts to
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demonstrate the performance of the C&R Core. Replaying approx.
10.000 changes for around 1.200 issues only takes a second. This
demo application thus provides initial evidence that TimeTracer is
sufficiently quick for this purpose.

Future Evaluation Plan: We plan on performing a thorough
qualitative evaluation of TimeTracer through a case study with
our industry partner in the domain of safety-critical systems to
understand how their quality assurance engineers can use replay-
ing of artifacts from Jama and Jira for inspecting the development
process. We expect to learn to what extent the existing replaying
capabilities are sufficient and which other features might be neces-
sary in practice to support the engineers’ tasks. We will also use
the involved real industry artifacts, traces, and their changes to
quantitatively evaluate performance. In parallel, we plan to utilize
TimeTracer during student software engineering projects where
students need to follow a prescribed process. With and without
TimeTracer, students write quality constraints and document the
extent to which they followed the process. Here, we will measure
(and compare) the students’ effort to write quality constraints and
obtain an accurate assessment.

5 CONCLUSIONS

TimeTracer enables the replaying of artifacts and their respective
relations (i.e., trace links) to other artifacts at different points in
time, based on their change history. The underlying generic data
model allows to integrate various tools and facilitates tool-agnostic
replaying. TimeTracer supports, for example, engineers in under-
standing how a development process evolved, or in testing qual-
ity constraints, as well as software engineering researchers for
validating recommendation tools. Future work includes in-depth
evaluation and increasing the number of tool connectors.
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